

Aims of the Session

- White Rose Scheme
- Has Maths changed?
- Place Value
- Addition and Subtraction
- Supporting Maths at home apps/ real life

Calculation Policy

Has Maths changed?

Number Formation

0		:3		5	6			
0	2	3	4	5	6	7	8	9

Your turn

Use the concrete resources to represent the numbers below:

12

24

30

Compare the numbers. What do you notice?

Addition and Subtraction

E

Complete the sentences.

a)

There are white bears.

There are brown bears.

There are bears altogether.

b)

There are horses.

There are sheep.

There are animals altogether.

There are 5 children on the bus.

3 more children get on the bus.

How many children are on the bus now?

There are children on the bus now.

Place Value/ Addition and Subtraction

$$5 + 3 = 8$$

$$3 + 5 = 8$$

$$8 = 5 + 3$$

$$8 = 3 + 5$$

$$8 - 5 = 3$$

$$8 - 3 = 5$$

$$3 = 8 - 5$$

$$5 = 8 - 3$$

18

1 7

Which of the images could help to complete the number sentence? Explain why.

Can you think of a number sentence for each of the other two images?

Complete a part-whole model for each way.

Can you partition the animals into more than 2 groups?

4 is the whole.

How many different part-whole models can you draw to show this?
Use different numbers for the parts each time.

Are any the same? Why?

Your turn

Double/ Half

Supporting Maths at Home

Knowledge Organisers

YR2 PLACE VALUE KNOWLEDGE ORGANISER

Key Concepts

- · Recognising the place value of each digit in a two digit number
- Read and write numbers up to 100 in numerals and in words
- Compare and order numbers from 0 up to 100
- · Partitioning tens and ones
- Understanding place value charts

greater than/less than

· Counting in 2s, 3s, 5s and 10s

Key Vocabulary

represents

equal to

tens and ones

place value

Numbers to 100

A two-digit number is made up of tens and ones. Base 10 can be used to represent numbers.

represents a ten

represents a one

This represents the number 35. It is made up of 3 tens (30) and 5 ones.

Numbers can also be represented with place value

These counters represent the number 46. It is made up of 4 tens (40) and 6 ones.

Numbers can also be shown in a ten frame.

This shows a complete ten and 7 ones. This means that it shows the number 17.

Place Value Charts

Place value helps us know the value of a digit, depending on its place in the number.

This place value chart shows a number using base 10. There are 4 tens (40) and 8 ones so it represents the number 48.

place so it means 5.

In this place value chart, the 2 digit is in the tens place, so it really means 20. The 5 digit is in the ones

© Copyright Deepening Understanding LTD 2020 Photocopiable for educational purposes only

Any questions?

Thank you for coming. We hope you found it useful.

